Tétraéthers de diglycérol dans un profil de sol vosgien : distributions, datations et origines

BLANDINE COUREL 2^{ÈME} RÉUNION FROG

LE-BOURGET-DU-LAC, LE 3 JUILLET 2014

LABORATOIRE DE BIOGÉOCHIMIE MOLÉCULAIRE (UMR 7177, STRASBOURG)

- I. Introduction : les tétraéthers de diglycérol (GDGTs)
- **II.** Distributions des GDGTs dans un sol vosgien
- **III.** Séparation et purification des GDGTs
- **IV.** Datation et origine des GDGTs
- V. Conclusion

Introduction

Cf. présentation D. Schwartz, Les archives pédologiques: nouvelles approches en spectroscopie proche-infrarouge et sur les biomarqueurs moléculaires lipidiques. Les apports du programme GESSOL-APOGEE

Introduction

✓ origine des *i*- et *br*-GDGTs

dynamique microbienne ancienne et récente

✓ paléo environnement

Les tétraéthers de diglycérol (GDGTs): origine et structures

Les tétraéthers de diglycérol isoprénoïdes (*i*-GDGTs): origine et structures

(1) Schouten et al., 2013, Organic Geochemistry, 54, 19-61; (2) Sinninghe Damsté et al., 2002, Journal of Lipid Research, 43, 1641-1651.

Les tétraéthers de diglycérol isoprénoïdes (*i*-GDGTs): origine et structures

- Deux groupes glycérols
- Deux chaînes alkyles isoprénoïdes de type biphytane
- Eventuellement groupe(s) cyclopentyle(s) et cyclohexyle (crénarchéol)
- Groupements polaires IPL (« Intact Polar Lipids »)

Structures de tétraéthers de diglycérol isoprénoïdes issus d'archées. Les groupements X (≠ H) représentent les têtes polaires caractérisant les IPLs

Les tétraéthers de diglycérol non-isoprénoïdes (br-GDGTs): origine et structures

Les tétraéthers de diglycérol non-isoprénoïdes (br-GDGTs): origine et structures

- Deux groupes glycérols
- Deux chaînes alkyles en C₃₀, C₃₁ ou C₃₂ ramifiées
- Eventuellement un ou deux cyclopentyles

Structures des tétraéthers de diglycérol ramifiés issus de bactéries.

(1) Sinninghe Damsté et al., 2000, Journal of the Chemical Society, Chemical Communications, 1683-1684.

Les tétraéthers de diglycérol comme biomarqueurs

50

« Traceurs moléculaires » de certaines conditions environnementales

✓ PaléopH : indice CBT⁽¹⁾

Température moyenne annuelle de l'air : indice MBT⁽¹⁾

✓ Température de l'eau : indice TEX₈₆⁽²⁾

Issu de Schouten et al., 2013, Organic Geochemistry, 54, 19-61.

Origine de la matière organique (marine vs. continentale) : indice BIT⁽³⁾

Intérêt dans le cadre de problématiques liées à l'étude des changements climatiques

(1) Weijers et al., **2007**, *Geochimica et Cosmochimica Acta*, 71, 703-713 ; (2) Schouten et al., **2002**, *Earth and Planetary Science Letters*, 204, 265-274 ; (3) Hopmans et al., **2004**, *Earth and Planetary Science Letters*, 224, 107-116.

Objectifs du projet de recherche

- Approfondir nos connaissances sur l'origine et la distribution des GDGTs contenus dans les sols (datation)
- Développer un protocole analytique pour l'isolement des GDGTs en milieu sol

Etude des GDGTs dans un profil de sol

4 échantillons de sol prélevés dans la prairie d'altitude (environ 1300 m) du Falimont (Massif du Hohneck, Vosges, France)

 Échantillon de surface : 0-10 cm
Échantillons de profondeur : 20-30 cm, 40-50 cm et 50-60 cm

Sols acides (pH ~ 3,5)

Extraction de la matière organique

Analyse de la distribution des GDGTs

14

Prédominance des br-GDGTs en surface et augmentation de l'abondance relative des *i*-GDGTs avec la profondeur

Distribution des GDGTs dans un profil de sol à quatre profondeurs différentes (Falimont, Vosges).

Analyse de la distribution des GDGTs

Observations de Yang et al. (2012)⁽¹⁾: ✓ prédominance des *br*-GDGTs dans sols acides (pH < 5) \checkmark *i*-GDGTs majoritaires dans sols basiques (pH > 8) ✓ Corrélation entre l'abondance relative des GDGTs et le

i-GDGTs détectés dans les sols profonds du Hohneck (sols acides)

	0-10 cm	40-50 cm
pH calculé	3,77	9,38
pH mesuré	3,59	4,30

Analyse de la distribution des *i*-GDGTs

- Absence d'i-GDGTs en surface:
 - Pas de « core lipids »

16

population active d'archées synthétisant exclusivement des IPLs?

Hydrolyse (HCl/MeOH) du sédiment et de l'extrait organique de surface

Absence d'IPLs en surface = pas d'archées actives en surface

Analyse de la distribution des i-GDGTs

Population actuelle d'archées colonisant exclusivement les sols profonds ?

Hydrolyse des sédiments et des extraits organiques en profondeur par HCI/MeOH

même distribution des *i*-GDGTs avant et après hydrolyse = **pas d'IPLs** = **pas de population vivante d'archées ?**

Analyse de la distribution des *i*-GDGTs

 Molécules fossiles en profondeur témoignant de l'existence d'une population passée d'archées ?

Bilan du profil de sol

en surface : pas d' *i*-GDGTs ("core lipids") et pas d'IPLs

en profondeur : présence d' *i-*GDGTs ("core lipids") mais pas d'IPLs

Objectif : isoler et purifier les GDGTs pour une datation au ¹⁴C par AMS (Accelerated Mass Spectrometry).

Collaboration avec le Geological Institute – ETH de Zurich ⁽¹⁾ Séparation et purification des GDGTs

Extraction et isolement des GDGTs sur colonne de silice

Bilan de la purification – exemple des i-GDGTs

20

Chromatogrammes obtenus par HPLC-APCI-MS en phase directe de la fraction F1V2 de l'échantillon profond à 40-50cm (a) avant et (b) après séparation sur colonne en phase directe et (c) après séparation sur colonne en phase inverse.

Datation au ¹⁴C par AMS (Accelerated Mass Spectrometry) couplé à un réacteur spécial petit volume

21

 \checkmark mesure du rapport ¹⁴C/¹²C et ¹⁴C/¹³C

• fraction de la valeur moderne $F^{14}C$

• âge en B.P. (Before Present)

✓ échantillon de l'ordre du mg au µg

 influence importante des contaminants

Système MICADAS (« *Miniaturized Radiocarbon Dating System* »), laboratoire de Physique de l'ETH à Zurich

Datation au ¹⁴C par AMS (Accelerated Mass Spectrometry)

Profondeur	Carbone organique total	Extrait lipidique total	<i>n</i> -alcanes	i-GDGTs	br-GDGTs
	Age ¹⁴ C BP (± ans)				
0-10 cm	-961* (26)	-874* (34)	-516* (63)	/	165 (205)
20-30 cm	996 (31)	1338 (32)	2242 (36)	n.d.	n.d.
40-50 cm	2426 (33)	3159 (35)	3352 (44)	1527 (115)	1543 (147)
50-60 cm	4272 (36)	5353 (52)	5564 (52)	n.d.	n.d.

Résultats de la datation au carbone 14 par AMS. Mesures effectuées à l'ETH de Zurich en collaboration avec le Dr. Stefano Bernasconi et Dr. Irka Hajdas.

* Une valeur négative traduit un âge moderne (i.e. post-bombe)

Datation au ¹⁴C par AMS (Accelerated Mass Spectrometry)

Profondeur	Carbone organique total	Extrait lipidique total	<i>n</i> -alcanes
	Age ¹⁴ C BP (± ans)	Age ¹⁴ C BP (± ans)	Age ¹⁴ C BP (± ans)
0-10 cm	-961* (26)	-874* (34)	-516* (63)
20-30 cm	996 (31)	1338 (32)	2242 (36)
40-50 cm	2426 (33)	3159 (35)	3352 (44)
50-60 cm	4272 (36)	5353 (52)	5564 (52)

extrait lipidique plus vieux
que le carbone organique total

✓ même âge pour les *n*-alcanes
(biomarqueurs de végétaux) et
l'extrait lipidique total

Résultats de la datation au carbone 14 par AMS.

Datation au ¹⁴C par AMS (Accelerated Mass Spectrometry)

Profondeur	<i>n</i> -alcanes	i-GDGTs	br-GDGTs	✓ GDGTs plus jeunes que n- alcanes (et extrait lipidique)
	Age ¹⁴ C BP (± ans)	Age ¹⁴ C BP (± ans)	Age ¹⁴ C BP (± ans)	
				✓ i-GDGTs et hr-GDGTs =
0-10 cm	-516* (63)	/	165 (205)	même âge
20-30 cm	2242 (36)	n.d.	n.d.	meme uge
40-50 cm	3352 (44)	1527 (115)	1543 (147)	Populations qui co-existent
50-60 cm	5564 (52)	n.d.	n.d.	
				- 🗸 Mesure d'un âge moyen

Résultats de la datation au carbone 14 par AMS.

Développement d'une méthode d'isolement des GDGTs

25

Faible teneur en GDGTs, complexité des extraits lipidiques, présence de produits interférants

- Augmentation de la proportion en *i*-GDGTs avec la profondeur du sol
- Contribution mixte de population fossile et plus récente d'archées en profondeur (datation)

Merci pour votre attention

Sont associés au projet:

Philippe SCHAEFFER	Laboratoire de Biogéochimie Moléculaire, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, ECPM, Strasbourg, France
Pierre ADAM	Laboratoire de Biogéochimie Moléculaire, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, ECPM, Strasbourg, France
Stefano M. BERNASCONI	Geologisches Institut, ETH Zürich, Zürich, Switzerland
Irka HAJDAS	Lobaratory of Ion Beam Physics, ETH Zürich, Zürich, Switzerland
Damien ERTLEN	Laboratoire Image, Ville, Environnement, UMR 7362, Faculté de Géographie et d'Aménagement, Université de Strasbourg-CNRS, Strasbourg, France
Dominique SCHWARTZ	Laboratoire Image, Ville, Environnement, UMR 7362, Faculté de Géographie et d'Aménagement, Université de Strasbourg-CNRS, Strasbourg, France